
Resolver AAAA Opt-in/out

Erik Kline <ek@google.com>

RIPE62

AAAAs, the DNS, and IPv6 transition

DNS resolution of AAAAs is effectively the one and only
control switch for enabling/disabling IPv6 traffic.

RFC 3596: "The IP protocol version used for querying resource
records is independent of the protocol version of the resource
records; e.g., IPv4 transport can be used to query IPv6 records
and vice versa."

basically required...but it does break fate-sharing

How to restore some semblance of fate-sharing?
BIND's disable-aaaa-on-v4-transport
draft-vandergaast-edns-client-ip
temporary use of "whitelisting" (access control lists)

http://tools.ietf.org/html/rfc3596
http://tools.ietf.org/html/draft-vandergaast-edns-client-ip

Why use resolver ACLs?

To express the quality of working IPv6

Fate-sharing for DNS only indicates that a ~512 byte packet
wasn't dropped

Want users to have the best possible experience
what is the impact of >0.05+% of users experiencing
high latency or even not reaching the site at all?

Not all IPv6 connectivity is equal
an AS may have worse IPv6 redundancy than IPv4

Not all IPv6 networks are equally well supported
some operators may not want the IPv6 traffic (yet)

Exempli gratia

Normally, if a DNS resolver requests an IPv6 address for a Google web site, it
will not receive one…

…but a DNS resolver in the Google over IPv6 "whitelist" will receive an IPv6
address, and its users will be able to connect to Google web sites using IPv6.

http://google.com/ipv6/

For each Google over IPv6 request:

1. Receive a list of resolvers or prefixes
2. Attempt to verify the requester owns/operates said prefixes
3. Convert to ASN(s), complete list of IPv4 and IPv6 prefixes
4. Verify mutual IPv6 connectivity is not worse than IPv4:

routing table comparison
look at brokenness statistics

5. Record commitment to production-quality operations
6. Possibly coordinate go-live time:

try to find a light traffic time
deal with timezone issues
coordinate handling of brokenness reports with NOCs

7. Possibly deal with emergency revert requests

Can we automate some of these steps?

Currently have a method that:

can explicitly signal desire/readiness to [not] receive AAAAs
can also express per-AS opt-in/out

uses "reverse DNS" delegations for loose verification of
operational ownership

optionally uses TTLs to express desired lifetimes
...but operational reality may trump this

is fairly simple, in the common case, for network operators
don't have to contact each AAAA provider individually

Example

For each resolver: signal readiness/desire to receive AAAAs

;; 192.2.0.1
_aaaa.1.2.0.192.in-addr.arpa. 1W IN TXT "ok"

;; 192.2.0.2
_aaaa.2.2.0.192.in-addr.arpa. 1W IN TXT "!ok"

;; 192.2.0.3
_aaaa.3.2.0.192.in-addr.arpa. 1W IN TXT "ok !ok=15169,32934"

AAAA provider-side processes

1. Log resolver IP addresses

2. Background lookups of "_aaaa.reverse DNS" names for TXT
records with a specified format

3. Process and merge results into ACLs, optionally with TTLs
remove (or deny) formerly permitted resolvers now
opting out or no longer listing TXT records (expired)
impact analysis of proposed new whitelist entries

add or discard as determined by analysis
update running nameservers with new config

4. GOTO 1

Limitations

Implementation (software and processes) may be a
non-trivial effort

Compliance is not required

Update timeliness not guaranteed

Does not address suitability analysis phase
i.e. still have to review connectivity and brokenness

Results of impact analysis still opaque to requester
...and privacy requirements hamper cooperation

Thanks

ipv6whitelist.org

http://ipv6whitelist.org

