Resolver AAAA Opt-in/out

Erik Kline <ek@google.com>

RIPEG2



AAAAs, the DNS, and IPv6 transition

e DNS resolution of AAAAs is effectively the one and only
control switch for enabling/disabling IPv6 traffic.

e RFC 3596: "The IP protocol version used for querying resource
records is independent of the protocol version of the resource
records; e.q., IPv4 transport can be used to query IPv6 records

and vice versa."
o basically required...but it does break fate-sharing

e How to restore some semblance of fate-sharing?
o BIND's disable-aaaa-on-v4-transport
o draft-vandergaast-edns-client-ip
o temporary use of "whitelisting" (access control lists)



http://tools.ietf.org/html/rfc3596
http://tools.ietf.org/html/draft-vandergaast-edns-client-ip

Why use resolver ACLs?

To express the quality of working IPv6

e Fate-sharing for DNS only indicates that a ~512 byte packet
wasn't dropped

e \Want users to have the best possible experience
o what is the impact of >0.05+% of users experiencing
high latency or even not reaching the site at all”?

e Not all IPv6 connectivity is equal
o an AS may have worse |IPv6 redundancy than IPv4

e Not all IPv6 networks are equally well supported
o some operators may not want the IPv6 traffic (yet)



Exempli gratia

Normally, if a DNS resolver requests an IPv6 address for a Google web site, it

will not receive one...

DNS Resolver

www.google.com AAAA?

Google ¥ No AAAA
DNS Server

...but a DNS resolver in the Google over IPv6 "whitelist" will receive an IPv6
address, and its users will be able to connect to Google web sites using IPVvG.

www.google.com AAAA?

— NS

Google </ AAAA 2001:4860:2002::68
DNS Server DNS Resolver

with Google over IPv6 IPv6 www.google.com

http://qgooale.com/ipv6/




For each Google over |IPv6 request:

1. Receive a list of resolvers or prefixes
2. Attempt to verify the requester owns/operates said prefixes
3. Convert to ASN(s), complete list of IPv4 and IPv6 prefixes

4. Verify mutual IPv6 connectivity is not worse than |IPv4:
o routing table comparison
o look at brokenness statistics

5. Record commitment to production-quality operations

6. Possibly coordinate go-live time:
o try to find a light traffic time
o deal with timezone issues
o coordinate handling of brokenness reports with NOCs

/. Possibly deal with emergency revert requests




Can we automate some of these steps?

Currently have a method that:

e can explicitly signal desire/readiness to [not] receive AAAAs
o can also express per-AS opt-in/out

e uses "reverse DNS" delegations for loose verification of
operational ownership

e optionally uses TTLs to express desired lifetimes
o ...but operational reality may trump this

e is fairly simple, in the common case, for network operators
o don't have to contact each AAAA provider individually



Example

For each resolver: signal readiness/desire to receive AAAAs
;2 192.2.0.1
_aaaa.l.2.0.192.in-addr.arpa. IW IN TXT "ok"

;3 192.2.0.2
_aaaa.2.2.0.192.in-addr.arpa. 1W IN TXT "!ok"

;3 192.2.0.3
~aaaa.3.2.0.192.in-addr.arpa. I1W IN TXT "ok !ok=15169,32934"



AAAA provider-side processes

1. Log resolver |IP addresses

2. Background lookups of " aaaa.reverse DNS" names for TXT
records with a specified format

3. Process and merge results into ACLs, optionally with TTLs
o remove (or deny) formerly permitted resolvers now
opting out or no longer listing TXT records (expired)

o impact analysis of proposed new whitelist entries
m add or discard as determined by analysis

o update running nameservers with new config

4. GOTO 1



Limitations

e Implementation (software and processes) may be a
non-trivial effort

e Compliance is not required
e Update timeliness not guaranteed

e Does not address suitability analysis phase
o I.e. still have to review connectivity and brokenness

e Results of impact analysis still opaque to requester
o ...and privacy requirements hamper cooperation



Thanks

ipvewhitelist.org



http://ipv6whitelist.org

